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Our attitude toward risk plays a crucial role in influencing our
everyday decision-making. Despite its importance, little is known
about how human risk-preference can be modulated by observing
risky behavior in other agents at either the behavioral or the
neural level. Using fMRI combined with computational modeling
of behavioral data, we show that human risk-preference can be
systematically altered by the act of observing and learning from
others’ risk-related decisions. The contagion is driven specifically
by brain regions involved in the assessment of risk: the behavioral
shift is implemented via a neural representation of risk in the cau-
date nucleus, whereas the representations of other decision-related
variables such as expected value are not affected. Furthermore, we
uncover neural computations underlying learning about others’ risk-
preferences and describe how these signals interact with the neural
representation of risk in the caudate. Updating of the belief about
others’ preferences is associated with neural activity in the dorsolat-
eral prefrontal cortex (dlPFC). Functional coupling between the dlPFC
and the caudate correlates with the degree of susceptibility to the
contagion effect, suggesting that a frontal–subcortical loop, the so-
called dorsolateral prefrontal–striatal circuit, underlies the modu-
lation of risk-preference. Taken together, these findings provide a
mechanistic account for how observation of others’ risky behavior
can modulate an individual’s own risk-preference.

risk | caudate | decision-making | conformity | neuroeconomics

An individual’s attitude toward risk can exert a profound influence
on his/her life in a wide array of contexts (1, 2). For example,

risk-attitude governs an individual’s decision to purchase a safe asset
or to invest in a risky stock (3). Moreover, a risk-seeking attitude can
lead to an increased tendency toward behaviors leading to adverse
outcomes such as drug-taking, unsafe sexual behavior, pathological
gambling, and other potentially life-threatening pursuits; on the
other hand, a risk-averse tendency can result in a reduced prospect
of attaining the potentially high gains associated with the pursuit of
risky options (4, 5). Given the importance of risk-attitudes in influ-
encing everyday behavior, considerable research has been conducted
on the factors influencing risky decision-making. For instance, there
is substantial evidence that a number of extraneous variables such as
the framing of a decision context in terms of losses or gains (6, 7),
exposure to stressful life events (8, 9), and experiences of losses and
gains (10) can modulate risk-preferences.
Less studied however is the role of a contagion effect (11) in

modulating risk-seeking/averse behavior. That is, it remains
elusive how one’s risk-related behavior is influenced by ob-
serving the behavior of others. The role of contagion may be
especially important for understanding how and why risky be-
havior can become manifest in a number of critical situations.
For example, observing a peer’s risk-seeking behaviors might
exert a profound influence on conspecifics (12), resulting in an
increased tendency toward risk-seeking behavior, especially
during adolescence. Furthermore, the tendency of financial

markets to collectively veer from bull to bear markets and back
again (13) could arise in part because of the contagion of ob-
serving the risk-seeking or risk-averse investment behaviors of
other market participants.
There is considerable evidence that contagion or conformity

can affect an individual’s belief and behavior (11, 14, 15). For
instance, an individual’s decision-making, including risk-related
choice, can be changed by observing other peoples’ behavior
(14–18), and the behavioral shift is reflected in value-related
neural activity (16, 17, 19). However, little is known about the
computational mechanisms underlying the contagion effect.
Here, we aimed to provide a mechanistic account of how con-

tagion from observing or learning from other agents modulates an
individual’s own risk-related behavior by testing the following three
hypotheses. First, the act of observing and learning from other
agents will alter an individual’s own risk-preferences. Second, the
behavioral change will be associated specifically with modulation of
the neural processing of risk. That is, the neural representation of
risk per se, will be modulated, resulting in an increased or reduced
perception of risk for gambles. Third, an interaction between neural
systems implicated in representing risk and learning about others’
risk-preference will capture individual differences in susceptibility to
the contagion effect.

Results
Experimental Task. To test these hypotheses, we scanned 24 human
participants using functional magnetic resonance imaging (fMRI),
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while they repeatedly chose between a risky gamble and a guar-
anteed $10 (Self trials) (Fig. 1A), observed decisions of confeder-
ates (Observe trials), and predicted the confederates’ decisions
(Predict trials). The set of gambles presented (Fig. S1 A and B) was
designed to decorrelate the risk (variance of reward) from the
expected value of reward across trials (1).
The experiment consisted of five sessions, in which the three

types of trials were presented in a block-wise manner (Fig. 1B):
Sessions 2 and 4 involved all three types, whereas Sessions 1, 3,
and 5 included only Self trials. The confederate (“observee”) for
Observe/Predict trials was different between Session 2 and 4: one
for Session 2 was risk-averse and the other for Session 4 was risk-
seeking, or vice versa (Fig. S1B). We instructed participants that
the choices they observed were made by a real person recorded
from a previous experiment. In actuality, however, the observees’
choices were generated by computer algorithms, as in previous
studies (14, 15, 17, 19, 20).

Basic Behavioral Results. Consistent with previous findings (21),
before observing the others’ decisions, the majority of participants
exhibited risk-averse behavior, although there were considerable
individual differences (Fig. 1C). Here, we defined each partici-
pant’s risk-preference as the proportion of gambles accepted
relative to the proportion accepted by the risk-neutral agent (i.e.,
positive/negative values indicate risk-seeking/averse, respectively),
unless specifically mentioned otherwise. This simple model-free
measurement was highly consistent with other prevalent model-
based measurements based on utility functions (Fig. S1 E and F).

Behavioral Evidence for Contagion of Risk-Preference. Participants’
behavior showed an effect of contagion. That is, the participants’
risk-preference was shifted toward the observees’ (see Fig. 2A for
an example participant who exhibited a clear effect). The degree of
contagion, defined as positive when the participant conformed to
the observee (see Fig. 2A and the legend for details), was signifi-
cantly positive (P < 0.01; Fig. 2B). This effect was also confirmed
to be significant for both the risk-seeking and -averse observees
(P < 0.01 for both; Fig. 2C) and replicated in an independent
behavioral experiment (Fig. S2). A closer examination revealed a
trend that the effect was more prominent when participants’ own
risk-preference was incongruent with the observee’s, but the dis-
tance between participants’ and the observees’ preferences did not

parametrically covary with the degree of contagion (Fig. S3).
Furthermore, the degree of contagion was not significantly corre-
lated with the proportion of correct predictions in Prediction trials
(P > 0.05; Fig. 2D), implying that the contagion was not primarily
triggered by predicting the observees’ choices.
To exclude other accounts for the behavioral shift, we conducted

additional analyses. First, we examined whether participants be-
came more “rational” by observing the observees’ choices and
found no significant evidence of a change in their rationality across
sessions (Fig. S4 A and B and SI Text 1). Second, we confirmed that
the behavioral shift cannot be explained by “regression to the
baseline” (Fig. S4C and SI Text 1).
Next, we aimed to show that the shift in participants’ choices

across sessions was better captured by a change in their risk-
preferences rather than a change in their subjective judgments
about the probabilities (7, 22, 23). To this end, we constructed
two computational models, one with varying risk-preference
across sessions and the other with varying probability-weighting,
and compared their goodness-of-fit (SI Text 2). The analysis
revealed that the first model provided the better fit, indicating
that the behavioral shift was better explained by a change in risk-
preference. Similar analyses also revealed that it is unlikely that
participants simply biased utility (16) or choice probability (24)
of gambling options, possibly by copying the observee’s tendency
to take a gamble, without changing their own risk-preference
(SI Text 3 and SI Text 4). These behavioral results together suggest
that decision-making under risk can be altered by observing others’
decisions through the change of one’s own risk-preference.
Finally, to examine the extent to which the contagion effect

depends on observing the behavior of another human vs. a non-
human computer agent, we conducted an additional behavioral
experiment in which participants observed/predicted choices of
another human and a computer agent on different sessions (see SI
Methods for details). The result indicates that the contagion effect
is present for both the human and computer observees (P < 0.01
for both of the sessions, with no significant difference between the
sessions; P = 0.20). These results suggest that the extent to which
the observed agent is human or artificial does not affect the extent
to which the contagion effect is manifest.

Neural Encoding of Risk. At the neural level, risk was represented
in a dorsal part of striatum: the caudate nucleus (Fig. 2E and

Fig. 1. Experimental task and basic behaviors. (A) Timeline of each trial. On Self trials, participants decide whether to accept or reject a gamble within 4 s
(response time range, 0.29–3.88 s; mean ± SD, 1.62 ± 0.51; data from all of the participants are collapsed). If participants accept, they can gamble for a specific
amount of money; otherwise, they can take a guaranteed $10. The reward probability and magnitude of the gambles are varied on every trial and are
represented by a pie chart (size of the green area indicates the probability; and the digits denote the magnitude). On Observe trials, participants are asked to
observe a choice of another person, the “observee.” On Predict trials, participants predict the choice that the observee would make (response time range,
0.78–3.90 s; mean ± SD, 1.79 ± 0.56). Note that instruction phases were presented only during the first trial in each block. (B) Overall schedule. Sessions 1, 3,
and 5 include only Self trials, whereas sessions 2 and 4 contain all of the three trial types in a block-wise manner. Orange, blocks of Self trials; blue, blocks of
Observe trials; green, blocks of Predict trials. White digits denote the number of trials in each block. (C) Participants’ risk-preference in Session 1 (orange) and
the two observees’ preferences (blue, mean ± SD). Positive and negative values indicate risk-seeking and -averse, respectively.
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Table S1). Blood-oxygen-level dependent (BOLD) signal in the
caudate significantly correlated with the trial-by-trial risk of the
gambling option at the time of decision in Self trials [P < 0.05
whole-brain familywise error (FWE) corrected at cluster level;
general linear model (GLM) I (SI Methods)]. The right caudate
activity was also significant (P < 0.05) under the whole-brain
FWE correction at voxel level. As a robustness check, we in-
cluded the following variables into our regression model as re-
gressors of no-interest (GLM I-2; SI Methods): the response time,
the decision-related response, and the motor-related response.
Running this revised model with the motor covariates on the ana-
tomically defined caudate region of interest (25), we confirmed a
significant effect of risk on the neural activity after adjusting for the
effects of motor activity (P < 0.05). The risk effect also continued
to survive a whole-brain voxel-wise analysis with these motor cova-
riates included, albeit at a reduced threshold (P < 0.005 un-
corrected; cluster size, k > 45). Taken together, these results
indicate that the caudate represents risk during decision-making,
over and above effects of motor-responses and response-time.

Neural Encoding of Risk Associated with the Behavioral Shift in Risk-
Preference. We then found that the neural effect of risk in the
caudate covaried with the behavioral shift in risk-preference
across sessions (see Fig. 2F for an example participant showing a
clear effect). Here, the neural effect of risk in each session is
expressed as a β value (i.e., regression coefficient) of the risk
regressor from GLM I. To quantify this finding, we regressed
the neural effect of risk in the caudate against the behavioral
risk-preference across sessions and confirmed that the regression
slope was significantly positive (P < 0.01; Fig. 2G). The result
does not change if we use the data from sessions including only
Self trials (i.e., Sessions 1, 3, and 5) (P < 0.01). We also con-
ducted a whole-brain analysis to search for brain regions in which
the neural effect of risk covaried with the behavioral preference

across sessions and found only one region: caudate nucleus
(P < 0.05 whole-brain FWE corrected at cluster level).
On the other hand, the expected value of the gambling option

was correlated with activity in frontoparietal network brain regions
including medial prefrontal cortex (mPFC) (P < 0.05 whole-brain
FWE corrected at cluster level; Table S1 and Fig. S5A). However,
the neural effects of expected value were not correlated with the
behavioral shift in risk-preference across sessions (P > 0.05 for all
of the activated clusters; see Fig. S5B and the legend for details).
Moreover, we found that, consistent with a previous study (16),
mPFC and other regions tracked the utility signal incorporating the
change in risk-preference across trials, but the neural effects were
not associated with the behavioral shift across sessions (P > 0.05 for
all of the activated clusters; Fig. S5C). We also confirmed that the
behavioral change of risk-preference did not covary with the neural
effects of other decision-related variables: reward probability,
magnitude, or squared magnitude of the gambling option (P > 0.05
for all of the activated clusters; Fig. S5 D–F). These neural findings
together support our hypothesis that contagion modulates the
neural representation of risk per se, not the representations of
other factors such as expected value or integrated utility.

Learning About Others’ Risk-Preference.To exhibit contagion in this
task, participants first needed to learn observees’ risk-preference
from their choices. The proportion of correct predictions in Predict
trials and postexperiment ratings about the observees’ risk-prefer-
ence showed that participants indeed succeeded in learning about
their risk-preference (Fig. 3 A and B). Furthermore, a closer ex-
amination of the prediction performance revealed that the learning
was faster when the participants’ preference was congruent with
the observee’s (Fig. S6), suggesting that the participants used their
own preference as a starting point.
This suggestion is also supported by a formal model-based

analysis. We constructed a family of computational models and fit
those models to the participants’ prediction behavior (SI Text 5 and

Fig. 2. Contagion of risk-preference. (A) Change of an example participant’s risk-preference toward the observees’. Orange indicates the participant’s risk-
preference in each session, and blue indicates the observees’ preference. The degree of contagion is defined as Δ: the change of the risk-preference (i.e.,
proportion of gambles accepted) from the last session. Δ is positive when the participant conformed to the observee; negative when she/he anticonformed.
(B) Degree of contagion (mean ± SEM across participants, n = 24). The degree, Δ, is defined as the sum of Δ2 and Δ4. **P < 0.01. (C) Degree of contagion
plotted separately for the risk-averse and -seeking observees (mean ± SEM across participants). (D) Degree of contagion in each participant plotted as a
function of the proportion of the correct predictions made on Predict trials. (E) Neural representation of risk. Activity in the caudate significantly correlated
with risk of the gamble at the time of decision in Self trials [P < 0.05 FWE corrected at cluster-level; GLM I (SI Methods)]. (F) Relation between the behavioral
risk-preference and the neural effect of risk in the caudate in an example participant. Filled points indicate the participant’s behavioral risk-preference in each
session; open points indicate the neural effect of risk (i.e., β value for the risk regressor in GLM I) in each session. (Inset) Scatter plot of the same data.
(G) Relation between the behavioral risk-preference and the neural effect of risk (mean ± SEM across participants). We regressed the neural effect in the
caudate against the behavioral risk-preference across sessions and plot the average regression coefficient over the participants.
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Table S2). The model comparison revealed that a Bayesian
learning model using each individual’s own risk-preference as a
prior belief provided a better fit to the participants’ actual pre-
dictions than alternative models did.

Neural Correlates of Learning About Others’ Risk-Preference. To exam-
ine the neural substrates of learning about others’ risk-preferences,
we searched for brain regions associated with updating the belief
about others’ risk-preference, which is captured by the Kullback–
Leibler divergence (DKL) between the posterior and the prior (26).
The belief-updating signal, DKL, was found to correlate with
activity in dorsolateral prefrontal cortex (dlPFC) as well as other
regions including dorsomedial prefrontal cortex (dmPFC) and
inferior parietal lobule (IPL) at the time of confirmation in
Observe trials (Fig. 3C and Table S3; P < 0.05 whole-brain FWE
corrected at cluster level). Notably, the right dlPFC activity was
also significant (P < 0.05) under the whole-brain FWE correc-
tion at voxel level. Furthermore, we confirmed these activations
survived even when potential confounds, such as the observee’s
response time, decision, motor responses, were included into
the regression analysis [GLM V-2 (SI Methods)]. These results
suggest that updating of the belief in learning about others’ risk-
preference may occur in the dlPFC, dmPFC, and IPL—regions
previously implicated in learning about others’ reward structure
and mental states (19, 27–30).

Functional Connectivity Between the dlPFC and the Caudate. Given
the above results together with previous findings of the ana-
tomical and functional connectivity between dlPFC and caudate
(31, 32), we further reasoned that functional connectivity be-
tween the two regions would account for individual differences in
the degree of behavioral contagion. To test this, we conducted a
psychophysiological interaction (PPI) analysis on the caudate
with a psychological factor, the timing of self-decision, and a
physiological factor, the dlPFC activity (see SI Methods for de-
tails). This analysis revealed that functional coupling between
the two regions at the time of self-decision (i.e., effect of the PPI
term) was significantly correlated with the degree of behavioral
contagion across participants (Fig. 3D; P < 0.05; see SI Text 6 for
robustness check). More specifically, the PPI effect was negative
and around 0 for those participants with lower and higher be-
havioral contagion effect, respectively (Fig. 3D), and the main
effect of the dlPFC activity was significantly positive (P < 0.01).
A possible interpretation of these findings is that, for those in-
dividuals who are less susceptible to the contagion effect, the
default connectivity between dlPFC and caudate is suppressed at
the time of decision-making for the self.

Discussion
The present study uncovers the computational process by which
contagion effects arising from observing the behavior of another
agent can influence one’s own decision-making under risk.

Contagion Modulates Human Risk-Preference. Behaviorally, we demon-
strate that human risk-preference can be altered by a contagion effect
and rule out alternative possibilities such as changes in subjective
judgment about the probabilities (22, 23) or simple bias for/against
gambling options (16, 24). In economics and finance, the idea that
risk-preferences can be changed is still controversial, and it is difficult
to exclude the possibility that the observed shift in behaviors merely
reflects the change of something else such as beliefs in expected
value, reward probability, or integrated utility (33). Our behavioral
analyses provide evidence for the view that risk-preferences can in-
deed be altered.
Why did the participants change their risk-preference toward

the others? In our experiment, the participants were monetarily
incentivized to learn others’ risk-preference and predict their
future choices. One possibility is that the learning with an explicit

incentive for correct prediction leaked over to influence the
participants’ own choices. However, we found no association between
the degree of contagion and the prediction performance in our
data. Furthermore, previous studies have demonstrated that in
various contexts, contagion can occur by merely observing/learning
others’ without any explicit incentive for prediction (14–17, 19).
When taken together, the evidence suggests that the contagion
effect is not contingent on the provision of an explicit incentive for
prediction. An important direction for future studies will be to
identify the specific contextual elements that gives rise to the
emergence of a contagion effect on risk-preference (see SI Text 7
for further discussion).
We also found that contagion occurs with both human and ar-

tificial agents. In a behavioral experiment, we found that partici-
pants changed their risk-preference after observing not only human
but also computer observees. This finding has an implication for
finance. In modern financial markets, the use of algorithmic trading
(trades generated by artificial intelligence) has become increasingly
popular (34). Our finding implies that contagion of risk-preference
can work in such markets and potentially play a critical role in fi-
nancial bubble formation and collapse.

Risk-Preference Is Altered Through the Modulation of the Neural Processing
of Decision-Risk. The neural representation of decision-risk in the
caudate nucleus was found to be specifically modulated, in line with
the behavioral shift in risk-preferences. On the other hand, repre-
sentations of other decision-related variables such as expected value,
reward probability, reward magnitude, and integrated utility signals,
were unaffected by the behavioral shift. These results indicate that
the neural representation of decision-risk per se is directly modulated
by the contagion effect, consistent with the view that risk-preferences
are altered through changes in risk perception.

Fig. 3. Learning about others’ risk-preferences. (A) Participants’ learning
curve of the observees’ risk-preferences. The proportion of correct predic-
tions in Predict trials is plotted as a function of time (mean ± SEM across
participants; n = 24). Data from Sessions 2 and 4 are collapsed. (B) Post-
experiment ratings about the observees’ risk-preferences. We plot partici-
pants’ ratings (six-point scale) about how likely the observee would accept
a gamble, separately for risk-averse and -seeking observees (mean ± SEM
across participants). **P < 0.01. (C) Neural representation of belief-updating
during learning about others’ risk-preferences. Activity in the dlPFC, the
dmPFC, and the IPL significantly correlated with the update signal, DKL,
which is measure of the difference between the posterior and the prior, at
the time of confirmation in Observe trials [P < 0.05 FWE corrected at cluster-
level; GLM V (SI Methods)]. (D) Functional connectivity between dlPFC and
caudate at the time of decision on Self trials reflected the degree of be-
havioral contagion across participants (ρ = 0.38; P = 0.035).
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Our finding that risk signals that can be used as an input to the
decision process are encoded in the caudate nucleus stands in con-
trast to some other studies that have reported risk representations
in ventral striatum as well as insular cortex (1, 35, 36). A key dif-
ference between those previous studies and the present study is that
those previous studies probed the neural representation of “antici-
pation risk,” in that they measured activity during an anticipatory
phase in which an outcome was imminent, without a choice being
rendered or after a choice was made. In the present study, we
designed our experimental task to capture neural processing of risk
at the time of decision-making without the contribution of other risk-
related effects such as anticipation risk and the effects of learning
from reward feedback. The outcome of each choice was not revealed
(37), ensuring that an outcome was not immediately anticipated and
that valuations were not influenced by the history of previous out-
comes (see (38, 39) for the discrimination of instructed and learned
value information). According to our literature survey (Table S4),
only a few studies used such a design, and they reported neural
activity related to decision-risk in diverse regions including caudate
and insula (37, 40–43). The present study provides additional evi-
dence that caudate tracks decision-risk.
The contribution of the caudate to decision-risk is broadly con-

sistent with the view that dorsal striatum is implicated in motivational
and reward-related processes that involve decisions about action (44,
45). Combining this view with our finding that risk-related caudate
activity remains even after controlling for motor-related responses, we
suggest that the caudate is involved in risk-processing during decision-
making, above and beyond any contribution of this structure in motor
responding per se. Moreover, a number of clinical studies have
demonstrated that individuals with anxiety disorders show reduced
reward-related neural responses in caudate (46), while being more
risk-averse than other clinical patients and normal control groups (47,
48). These findings broadly support our claims about a role for the
caudate in risk representation and modulation of risk-preference.
However, it is important to note that the present findings do not
exclude the possibility that insular cortex and/or other structures
could also play a role in encoding risk signals at the time of decision-
making, above and beyond a role in anticipation risk, particularly
under conditions where an outcome is imminent.
Biological and social sciences have accumulated evidence that

human valuations can be altered by a contagion effect (14, 15, 17,
19, 49, 50). However, we know little about which components of
the value computation is affected. Does human valuation work at
the level of specific decision-related attributes or at the level of
an integrated utility signal that combines across multiple types of
attribute? Our findings in the context of decision-making under
risk imply, in a broad sense, that human valuation can be mod-
ulated through a change in the neural processing of a particular
decision-related attribute (in this case, the risk representation),
rather than necessarily acting on an integrated utility signal.

Modulation of Risk-Preference Is Mediated by an Interaction Between
Neural Systems Implicated in Representing Risk and Learning About
Others. By using model-based analyses on the behavioral and
fMRI data, we showed that the process of learning about others’
risk-preferences is well-captured by a Bayesian learning algo-
rithm with the use of one’s own preference as a prior belief and
that the belief-updating in the learning is associated with dlPFC.
The behavioral finding suggests that an individual uses his/her
own preference as a starting point for learning and making in-
ferences about other people, compatible with the concepts of
“anchoring-and-adjustment” (51) and “self-projection” (52, 53).

We also demonstrated via a connectivity analysis that func-
tional coupling between the dlPFC and the caudate nucleus re-
flects individual differences in susceptibility to contagion. These
results suggest that the contagion effect modulates the neural
representation of risk in caudate through functional connectivity
with the dlPFC. The role of a dorsolateral prefrontal–striatal
circuit (31) in contagion of risk-preferences can be interpreted within
a broader literature implicating this circuit in cognitive functions
more generally such as in response-selection, planning, and set-
shifting (32). The dlPFC and caudate have also been specifically
implicated in goal-directed learning and model-based reinforcement-
learning (54–56). Taken together, the present findings suggest that
the contagion effect may act on neural circuits underpinning a model-
based “cognitive” decision-making system.
The conclusions of the present study differ from previous findings

by Chung et al. (16), who argued that contagion works by means of
a constant bias to an integrated utility but not via risk-preference
per se. Whereas the present study involved repeated opportunities
to observe the risky behavior of another specific agent, in the Chung
et al. study, participants interacted with multiple (six in total)
anonymous agents throughout and thus did not have as much op-
portunity to learn about the specific risk-preferences of individual
agents. Such task differences could potentially account for the dif-
ference in the overall findings between the studies. Our present
findings indicate that when an individual has the opportunity to
consistently observe the risky behavior of another agent, one’s own
risk-preference can be directly influenced.
In conclusion, our results provide a computational account of how

human risk-preferences are altered by the contagion effect. This
finding has implications for economic and clinical studies. Although
previous studies in economics and finance have linked financial
bubbles to herd behaviors based on social learning (57, 58), our
findings provide evidence for the existence of a novel and parsi-
monious effect that could potentially contribute to financial bubble
formation and collapse: contagion of risk-preference through
changes in the perception of risk. Furthermore, given that adolescent
behavior can be strongly influenced by peers (12), contagion of risk-
preference could play a significant role in leading to increases in
adolescent risk-taking resulting in maladaptive behavioral outcomes.

Methods
This studywas approvedby the Institutional ReviewBoardof the California Institute
of Technology, andall participants gave their informedwritten consent.Weprovide
a comprehensive description of the experimental procedures in SI Methods.

In Self trials, participants chosewhether to “accept” or “reject” a gamble for
themselves. If they chose accept, they gambled for some amount of money;
otherwise, they took a guaranteed $10. Reward probability and magnitude of
the gamble were varied in every trial (Fig. S1A), so that risk of the gamble
(mathematical variance of reward) was decorrelated with the expected value
of reward. In Observe trials, participants observed a choice made by the
observee. The trials were designed to minimize differences from the Self trials,
and so the timeline of a trial and the set of gambles presented were the same
between the two types of trials (Fig. 1A and Fig. S1 A and B). Furthermore, in
the participant instructions, we emphasized that the observees did not have
any further information about the task such as knowledge of the outcome of
the gambles. Predict trials were introduced to confirm that the participants
learned the observee’s behavioral tendency (i.e., risk-preference) through the
observation of his choices in Observe trials, and therefore the number of trials
was less than the other two trial types (Fig. 1B and Fig. S1 A–C).

ACKNOWLEDGMENTS. We thank Simon Dunne and Keise Izuma for helpful
comments on the manuscript. This work was supported by the Japan Society
for the Promotion of Science (JSPS) Postdoctoral Fellowship for Research
Abroad (S.S.) and the National Institute of Mental Health (NIMH) Caltech
Conte Center for the Neurobiology of Social Decision Making (J.P.O.).

1. Knutson B, Bossaerts P (2007) Neural antecedents of financial decisions. J Neurosci

27(31):8174–8177.
2. Platt ML, Huettel SA (2008) Risky business: The neuroeconomics of decision making

under uncertainty. Nat Neurosci 11(4):398–403.

3. Bossaerts P, Plott C (2004) Basic principles of asset pricing theory: Evidence from large-

scale experimental financial markets. Rev Finance 8(2):135–169.
4. Lejuez CW, et al. (2002) Evaluation of a behavioral measure of risk taking: The Bal-

loon Analogue Risk Task (BART). J Exp Psychol Appl 8(2):75–84.

Suzuki et al. PNAS | April 5, 2016 | vol. 113 | no. 14 | 3759

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S
N
EU

RO
SC

IE
N
CE

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
27

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600092113/-/DCSupplemental/pnas.201600092SI.pdf?targetid=nameddest=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600092113/-/DCSupplemental/pnas.201600092SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600092113/-/DCSupplemental/pnas.201600092SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600092113/-/DCSupplemental/pnas.201600092SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600092113/-/DCSupplemental/pnas.201600092SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600092113/-/DCSupplemental/pnas.201600092SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600092113/-/DCSupplemental/pnas.201600092SI.pdf?targetid=nameddest=SF1


www.manaraa.com

5. Ligneul R, Sescousse G, Barbalat G, Domenech P, Dreher J-C (2013) Shifted risk pref-
erences in pathological gambling. Psychol Med 43(5):1059–1068.

6. De Martino B, Kumaran D, Seymour B, Dolan RJ (2006) Frames, biases, and rational
decision-making in the human brain. Science 313(5787):684–687.

7. Kahneman D, Tversky A (1979) Prospect theory: An analysis of decision under risk.
Econometrica 47(2):263–292.

8. Callen M, Isaqzadeh M, Long JD, Sprenger C (2014) Violence and risk preference:
Experimental evidence from Afghanistan. Am Econ Rev 104(1):123–148.

9. Cameron L, Shah M (2013) Risk-Taking Behavior in the Wake of Natural Disasters
(National Bureau of Economic Research, Cambridge, MA).

10. Xue G, Lu Z, Levin IP, Bechara A (2011) An fMRI study of risk-taking following wins
and losses: Implications for the gambler’s fallacy. Hum Brain Mapp 32(2):271–281.

11. Cialdini RB, Goldstein NJ (2004) Social influence: Compliance and conformity. Annu
Rev Psychol 55:591–621.

12. Albert D, Chein J, Steinberg L (2013) Peer influences on adolescent decision making.
Curr Dir Psychol Sci 22(2):114–120.

13. Bondt WFM, Thaler R (1985) Does the stock market overreact? J Finance 40(3):
793–805.

14. Klucharev V, Hytönen K, Rijpkema M, Smidts A, Fernández G (2009) Reinforcement
learning signal predicts social conformity. Neuron 61(1):140–151.

15. Campbell-Meiklejohn DK, Bach DR, Roepstorff A, Dolan RJ, Frith CD (2010) How the
opinion of others affects our valuation of objects. Curr Biol 20(13):1165–1170.

16. Chung D, Christopoulos GI, King-Casas B, Ball SB, Chiu PH (2015) Social signals of
safety and risk confer utility and have asymmetric effects on observers’ choices. Nat
Neurosci 18(6):912–916.

17. Zaki J, Schirmer J, Mitchell JP (2011) Social influence modulates the neural compu-
tation of value. Psychol Sci 22(7):894–900.

18. Charpentier CJ, Moutsiana C, Garrett N, Sharot T (2014) The brain’s temporal dy-
namics from a collective decision to individual action. J Neurosci 34(17):5816–5823.

19. Garvert MM, Moutoussis M, Kurth-Nelson Z, Behrens TEJ, Dolan RJ (2015) Learning-induced
plasticity in medial prefrontal cortex predicts preference malleability. Neuron 85(2):418–428.

20. Izuma K, Adolphs R (2013) Social manipulation of preference in the human brain.
Neuron 78(3):563–573.

21. Tobler PN, Christopoulos GI, O’Doherty JP, Dolan RJ, Schultz W (2009) Risk-dependent re-
ward value signal in human prefrontal cortex. Proc Natl Acad Sci USA 106(17):7185–7190.

22. Hsu M, Krajbich I, Zhao C, Camerer CF (2009) Neural response to reward anticipation
under risk is nonlinear in probabilities. J Neurosci 29(7):2231–2237.

23. Tobler PN, Christopoulos GI, O’Doherty JP, Dolan RJ, Schultz W (2008) Neuronal dis-
tortions of reward probability without choice. J Neurosci 28(45):11703–11711.

24. Rutledge RB, Skandali N, Dayan P, Dolan RJ (2015) Dopaminergic modulation of
decision making and subjective well-being. J Neurosci 35(27):9811–9822.

25. Tzourio-Mazoyer N, et al. (2002) Automated anatomical labeling of activations in
SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage 15(1):273–289.

26. O’Reilly JX, et al. (2013) Dissociable effects of surprise and model update in parietal
and anterior cingulate cortex. Proc Natl Acad Sci USA 110(38):E3660–E3669.

27. Suzuki S, et al. (2012) Learning to simulate others’ decisions. Neuron 74(6):1125–1137.
28. Boorman ED, O’Doherty JP, Adolphs R, Rangel A (2013) The behavioral and neural

mechanisms underlying the tracking of expertise. Neuron 80(6):1558–1571.
29. Burke CJ, Tobler PN, Baddeley M, Schultz W (2010) Neural mechanisms of observa-

tional learning. Proc Natl Acad Sci USA 107(32):14431–14436.
30. Behrens TEJ, Hunt LT, Woolrich MW, Rushworth MFS (2008) Associative learning of

social value. Nature 456(7219):245–249.
31. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally

segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9(1):357–381.
32. Tekin S, Cummings JL (2002) Frontal-subcortical neuronal circuits and clinical neuro-

psychiatry: An update. J Psychosom Res 53(2):647–654.
33. Bikhchandani S, Sharma S (2000) Herd behavior in financial markets. Staff Pap Int

Monet Fund 47(3):279–310.
34. Chaboud AP, Chiquoine B, Hjalmarssone E, Vega C (2014) Rise of the machines: Al-

gorithmic trading in the foreign exchange market. J Finance 69(5):2045–2084.
35. Mohr PNC, Biele G, Heekeren HR (2010) Neural processing of risk. J Neurosci 30(19):

6613–6619.
36. Wu CC, Sacchet MD, Knutson B (2012) Toward an affective neuroscience account of

financial risk taking. Front Neurosci 6:159.
37. Christopoulos GI, Tobler PN, Bossaerts P, Dolan RJ, Schultz W (2009) Neural correlates

of value, risk, and risk aversion contributing to decision making under risk. J Neurosci
29(40):12574–12583.

38. Li J, Delgado MR, Phelps EA (2011) How instructed knowledge modulates the neural
systems of reward learning. Proc Natl Acad Sci USA 108(1):55–60.

39. Fitzgerald THB, Seymour B, Bach DR, Dolan RJ (2010) Differentiable neural substrates
for learned and described value and risk. Curr Biol 20(20):1823–1829.

40. Hsu M, Bhatt M, Adolphs R, Tranel D, Camerer CF (2005) Neural systems responding to
degrees of uncertainty in human decision-making. Science 310(5754):1680–1683.

41. Weber BJ, Huettel SA (2008) The neural substrates of probabilistic and intertemporal
decision making. Brain Res 1234:104–115.

42. Symmonds M, Wright ND, Bach DR, Dolan RJ (2011) Deconstructing risk: Separable
encoding of variance and skewness in the brain. Neuroimage 58(4):1139–1149.

43. Labudda K, et al. (2008) Neural correlates of decisionmakingwith explicit information about
probabilities and incentives in elderly healthy subjects. Exp Brain Res 187(4):641–650.

44. O’Doherty J, et al. (2004) Dissociable roles of ventral and dorsal striatum in in-
strumental conditioning. Science 304(5669):452–454.

45. Balleine BW, DelgadoMR, Hikosaka O (2007) The role of the dorsal striatum in reward
and decision-making. J Neurosci 27(31):8161–8165.

46. Pizzagalli DA, et al. (2009) Reduced caudate and nucleus accumbens response to re-
wards in unmedicated individuals with major depressive disorder. Am J Psychiatry
166(6):702–710.

47. Maner JK, et al. (2007) Dispositional anxiety and risk-avoidant decision-making. Pers
Individ Dif 42(4):665–675.

48. Giorgetta C, et al. (2012) Reduced risk-taking behavior as a trait feature of anxiety.
Emotion 12(6):1373–1383.

49. Bursztyn L, Ederer F, Ferman B, Yuchtman N (2014) Understanding mechanisms un-
derlying peer effects: Evidence from a field experiment on financial decisions.
Econometrica 82(4):1273–1301.

50. Burke CJ, Tobler PN, Schultz W, Baddeley M (2010) Striatal BOLD response reflects the
impact of herd information on financial decisions. Front Hum Neurosci 4:48.

51. Tamir DI, Mitchell JP (2010) Neural correlates of anchoring-and-adjustment during
mentalizing. Proc Natl Acad Sci USA 107(24):10827–10832.

52. Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11(2):
49–57.

53. Mitchell JP (2009) Inferences about mental states. Philos Trans R Soc Lond B Biol Sci
364(1521):1309–1316.

54. McNamee D, Liljeholm M, Zika O, O’Doherty JP (2015) Characterizing the associative
content of brain structures involved in habitual and goal-directed actions in humans:
A multivariate FMRI study. J Neurosci 35(9):3764–3771.

55. Tanaka SC, Balleine BW, O’Doherty JP (2008) Calculating consequences: Brain systems
that encode the causal effects of actions. J Neurosci 28(26):6750–6755.

56. Morris RW, Dezfouli A, Griffiths KR, Balleine BW (2014) Action-value comparisons in the dor-
solateral prefrontal cortex control choice between goal-directed actions. Nat Commun 5:4390.

57. Chari VV, Kehoe PJ (2004) Financial crises as herds: Overturning the critiques. J Econ
Theory 119(1):128–150.

58. Bikhchandani S, Hirshleifer D, Welch I (1992) A theory of fads, fashion, custom, and
cultural change as informational cascades. J Polit Econ 100(5):992–1026.

59. Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies
of the orbitofrontal cortex. Neuroimage 19(2 Pt 1):430–441.

60. Cox RW (1996) AFNI: Software for analysis and visualization of functional magnetic
resonance neuroimages. Comput Biomed Res 29(3):162–173.

61. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model
selection for group studies. Neuroimage 46(4):1004–1017.

62. Daw ND (2011) Trial-by-trial data analysis using computational models. Decision
Making, Affect, and Learning Attention and Performance XXIII, eds Delgado MR,
Phelps EA, Robbins TW (Oxford Univ Press, Oxford), pp 3–38.

63. Efron B (1992) Jackknife-after-bootstrap standard errors and influence functions. J R
Stat Soc Ser B Stat Methodol 54:83–127.

64. Martin LN, Delgado MR (2011) The influence of emotion regulation on decision-
making under risk. J Cogn Neurosci 23(9):2569–2581.

65. Berg J, Dickhaut J, McCabe K (2005) Risk preference instability across institutions: A
dilemma. Proc Natl Acad Sci USA 102(11):4209–4214.

66. Kolling N, Wittmann M, Rushworth MFS (2014) Multiple neural mechanisms of decision
making and their competition under changing risk pressure. Neuron 81(5):1190–1202.

67. Cohn A, Engelmann J, Fehr E, Maréchal MA (2014) Evidence for countercyclical risk
aversion: An experiment with financial professionals. Am Econ Rev 105(2):860–885.

68. Paulus MP, Rogalsky C, Simmons A, Feinstein JS, Stein MB (2003) Increased activation
in the right insula during risk-taking decision making is related to harm avoidance
and neuroticism. Neuroimage 19(4):1439–1448.

69. Huettel SA, Stowe CJ, Gordon EM, Warner BT, Platt ML (2006) Neural signatures of
economic preferences for risk and ambiguity. Neuron 49(5):765–775.

70. van Leijenhorst L, Crone EA, Bunge SA (2006) Neural correlates of developmental differ-
ences in risk estimation and feedback processing. Neuropsychologia 44(11):2158–2170.

71. Lee TMC, Leung AWS, Fox PT, Gao J-H, Chan CCH (2008) Age-related differences in
neural activities during risk taking as revealed by functional MRI. Soc Cogn Affect
Neurosci 3(1):7–15.

72. Engelmann JB, Tamir D (2009) Individual differences in risk preference predict neural
responses during financial decision-making. Brain Res 1290:28–51.

73. Smith BW, et al. (2009) Neural substrates of reward magnitude, probability, and risk
during a wheel of fortune decision-making task. Neuroimage 44(2):600–609.

74. Xue G, et al. (2009) Functional dissociations of risk and reward processing in the
medial prefrontal cortex. Cereb Cortex 19(5):1019–1027.

75. Paulus MP, et al. (2001) Prefrontal, parietal, and temporal cortex networks underlie
decision-making in the presence of uncertainty. Neuroimage 13(1):91–100.

76. Volz KG, Schubotz RI, von Cramon DY (2003) Predicting events of varying probability:
Uncertainty investigated by fMRI. Neuroimage 19(2 Pt 1):271–280.

77. Matthews SC, Simmons AN, Lane SD, Paulus MP (2004) Selective activation of the nucleus
accumbens during risk-taking decision making. Neuroreport 15(13):2123–2127.

78. Volz KG, Schubotz RI, von Cramon DY (2004) Why am I unsure? Internal and external
attributions of uncertainty dissociated by fMRI. Neuroimage 21(3):848–857.

79. Cohen MX, Heller AS, Ranganath C (2005) Functional connectivity with anterior cingulate
and orbitofrontal cortices during decision-making. Brain Res Cogn Brain Res 23(1):61–70.

80. Huettel SA, Song AW, McCarthy G (2005) Decisions under uncertainty: Probabilistic con-
text influences activation of prefrontal and parietal cortices. J Neurosci 25(13):3304–3311.

81. Huettel SA (2006) Behavioral, but not reward, risk modulates activation of prefrontal,
parietal, and insular cortices. Cogn Affect Behav Neurosci 6(2):141–151.

82. Mohr PNC, Biele G, Krugel LK, Li S-C, Heekeren HR (2010) Neural foundations of risk-
return trade-off in investment decisions. Neuroimage 49(3):2556–2563.

83. Bach DR, Hulme O, Penny WD, Dolan RJ (2011) The known unknowns: Neural rep-
resentation of second-order uncertainty, and ambiguity. J Neurosci 31(13):4811–4820.

84. Payzan-LeNestour E, Dunne S, Bossaerts P, O’Doherty JP (2013) The neural repre-
sentation of unexpected uncertainty during value-based decision making. Neuron
79(1):191–201.

3760 | www.pnas.org/cgi/doi/10.1073/pnas.1600092113 Suzuki et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
27

, 2
02

1 

www.pnas.org/cgi/doi/10.1073/pnas.1600092113

